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SUMMARY 

This volume presents a technique to  s e t  up and solve the boundary-value 

problem of s t ructures  composed of she l l  elements. 

from the standpoint of t r ans fomt ions  of coordinate systems, the c o q a t i -  

b i l i t y  and equilibrium requirements a t  the junctures and t h e  solution of a 

large s e t  of algebraic equations. 

s t i f fness  o r  displacement method i s  introduced to* multicellular shell  

s t ructure  t o  predict  the stresses and deformations due t o  applied loads and 

thermal. gradients. It i s  shown that the coupling and ordering of equations 

plays an important role  i n  forming a desirable overal l  banded matrix. 

example which demonstrates the prac t icabi l i ty  of the method i s  given. 

d i g i t a l  program designed fo r  the ,juncture matching has been developed. 

Although t h i s  program i s  not sophisticated, it can be used f o r  a complete 

The problem i s  fornnilated 

The technique, known as  the d i rec t  m t r i x  

A n  

A 

juncture problem. 

iii 



Section 

c o m m  

1 

2 

3 

FDFU3WORD 

S r n Y  

NOTATION 

1- DUCTION 

STIFFNESS METHOD FOR SHEXL STRUCTURES 
2.1 General 

2.2 Coordinate System 

‘2.3 Compatibility and Equilibrium Along 

2.4 
Juncture Line 

The Overall S t i f k e s s  Matrix of a Shel l  Structure 

APPLICATION OF THE STIFPNESS METHOD To A MULTICELLUL4R 

STRWTURE 

3 . 1  General 

3.2 Overall Stiffness Matrix 

3.3 Successive Approximtion 

3.4 Numerical Example 

Page 

ii 

iii 

V 

1 

5 
5 
6 

9 
10 

i v  



. 

D 
E 

F 

Fi 
Ff 

G 

fi 

i, j 

k 

u, v, 

6 

V 

ITOTATION 

flexural rigidity of shell = EG3/12(l - v2) 
modulus of elasticity 

nondimensionalized force vector 

boundary force at station i 

boundary forces of fixed-edge shell due to applied forces 

shear modulus 

thickness of shell 

dummy subscripts 

stiffness nratrix 

stiffness influence coefficients 

moments and stress resultants 

transverse shears 

displacement components 

orthogonal coordinates along boundaries of a shell 

nondimensionalized displacement vector 

boundary deformations {displacements or rotations) at Station 1 

or  thermal gradients 

dimensioaalizing matrix for forces F A = AF 

dimensionalizing matrix for displacements ŝ  = p6 
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Section 1 
1DZIXOIXTCTION 

I .  

As a result of an investigation of juncture stress fields peculiar to the 
multicellular pressure vessels (Fig. l), a theory for the prediction of the 
membrane and bending stresses and the corresponding deformations for such 
shell structures was formulated.* 

Fig. 1 Multicellular Shell Structure 

* "Investigation of Juncture Stress Fields in Multicellular Shell Structures," 
by E. Y. W. Tsui, F. A .  Brogan, J. M. Massard, P. Stern, and C. E. Stuhlman, 
Technical Report M-03-63-1, Lockheed Missiles & Space Company, Sunnyvale, 
Calif., Feb 1964 - NASA CR-610501 
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Due t o  the f a c t  that analytic solutions a re  s t i l l  lacking, it was decided to 

solve the problem numerically by means of a finite-difference technique. 5'3 

ensure the f e a s i b i l i t y  of such a numerical solution, a d i rec t  method of solving 

la rge  matrices with a high-speed digital computer was also developed. 

According t o  the previous work, i f  t h e  s t i f fness  o r  displacement method is used, 

the t o t a l  forces and hence the  corresponding stresses along the juncture of the 

shel l  segments (Fig. 2) may be expressed concisely i n  the following matrix ?om 

F = k6 f Ff 

where k i s  the s t i f fnes s  matrix, 6 are  the deformations, and Ff a re  the 

fixed-end forces due t o  applied loads o r  thermal gradients. In  view of t h i s  

s i tua t ion ,  it is logical  t o  solve the problem systematically by the  established 

general procedure of analysis already described. 

b r i e f l y  as follows: 

This procedure may be s ta ted 

1. Determination of the fixed-end forces, 

w e l l  as s t resses  and deformations i n  the in t e r io r  of s h e l l  segments 

due t o  loads 

Ff , along the boundary as 

, along the boundaries k i j  2. Determination of the influence coefficients,  

of she l l  segments, i .e . ,  the induced forces a t  points i due t o  un i t  

deformations (6 = 1) at  points j 

3. Determination of the actual  deformtions,  6 , along the s h e l l  

boundaries; this requires the sa t i s fac t ion  of both compatibility 

and equilibrium conditions a t  the junctures of the s t ructure  

Once a l l  the work involved i n  these three steps i s  completed, the t o t a l  s t resses  

and deformations i n  the specific discrete i n t e r io r  locations may be obtained. 
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Fig. L Basic S h e l l  Elements of Multicel1ul:xr StrucLure 
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T h i s  volume presents the work involved i n  Step 3 and includes a technique 

t o  s e t  up an overal l  s t i f fness  matrix f o r  shell structures.  

based on the s t i f fnes s  matrices of the individual shell elements and compati- 

b i l i t y  and equilibrium requirements along their  juncture l ines .  

matrix method is  applied t o  a multicellular s h e l l  s t ructure  and a simple 

numerical example is given t o  demonstrate the technique. 

t i o n  and successive approximation methods of determining the ac tua l  deforma- 

t ions  along t h e  she l l  boundaries are given. 

This matrix i s  

The s t i f fnes s  

Both overal l  relaxa- 
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2.1 General 

Section 2 

STIFFNESS METHOD FOR SHELL S'IWCTuRES 

Previous volumes contain information on the determination of fixed-edge forces 

and s t i f fness  influence coefficients of s h e l l  elements which form the 

multicellular s h e l l  structure shown i n  Fig. 2. 

possible t o  determine by the "stiffness" method the boundary deformations and 

forces required t o  jo in  the various elements together t o  form a continuous 

structure.  

p l e t e ly  determined by the loading and boundary deformation of each element. 

Therefore, the problem i s  t o  determine the deformation a t  the juncture of the 

she l l  elements f o r  the complete structure when it is  subjected t o  a prescr i led 

loading. The s t i f fnes s  method obtains i t s  name from the  f a c t  t h a t  the juncture 

problem i s  reduced t o  the solution of a s e t  of simultaneous equations 

With this knowledge it is  

Stresses and displacements a t  any point i n  the s t ructure  a re  com- 

- Z I R  = F 

i n  which the unknowns are  the redundant juncture deforrcations h R ,  the vector 

F i s  composed of known fixed-edge forces and the matrix K i s  the "overall" 

s t i f fnes s  matrix. T h i s  set of equations i s  based on the element consti tutive 

equation 

- 

f F = k 6 + F  

by requiring compatibility of the deformations 6 and equilibrium of the 

forces F between the she l l  elements along juncture l i nes .  In principle the  

problem i s  straightforward; however, i n  carrying out the analysis,  problems such 

as  the coordinate system, ordering of the equations, and the solution of a large 

system of simultaneous equations become evident. 
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2.2 Coordinate System 

The consti tutive boundary relations f o r  the individual s h e l l  elements were 

found by using the most convenient orthogonal coordinate system f o r  the g i v m  

geometry, thus appropriate shell coordinates were used f o r  the loca l  

coordinate system f o r  the cylinder, cone, and sphere. A l l  forces F and 

deformations 6 

parameters. 

matrix it i s  necessary t o  dimensionalize the consti tutive boundary equations 

a s  noted in Vol. V or t o  nondimensionalize these quantit ies by the same 

were nondimensionalized i n  order t o  cover a wide range of 

Therefore, as a first s tep  i n  obtaining the overal l  s t i f fnes s  

constants. 

For a general structure it i s  sometimes useful t o  consider a rectangular global 

coordinate system f o r  a l l  forces and deformations. A she l l  s t ructure  on the 

other  hand has a common tangent l i n e  ab 8 s  seen i n  Fig. 3 along which the 

rotat ion w and the displacement component 

of two o r  more elements. 

coordinate system of element 1 o r  2 f o r  reference of direction for force and 

deformation components. Along the juncture of the two elements shown i n  Fig. 3 

- 
are  pa ra l l e l  a t  the juncture "ri q 

For this case it is  advantageous t o  use the loca l  

Fig. 3 Juncture Line of Two Shell Elements 
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the  loca l  coordinate 11 is  para l le l  f o r  both elements. Thus t o  transform 

the boundary coordinate of Element 2 to conform t o  the coordinate syL. ,  =+em of 
Element 1 involves a 180" rotation about the z2 axis and a ro ta t ion  by the 

amount -$ about the ?1 axis. This rotat ion of coordinates is  given by 

( 2 . 3 )  

In cer ta in  cases it can occur t h a t  the 1 
i n  the same direction as shown i n  Fig. 4. 

coordinates of Elements1 and 2 a re  

Then the transformation of the 

Fig. 4 Orientation of Coordinates Along the Juncture 
of Two Shel l  Elements 

l oca l  coordinates of Element 2 t o  those of Element 1 i s  found by a rotat ion of 

-$ about the ?') axis and i s  given by 

7 
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0 Since the components f boundary forces and d e f o m t i o n s  are  directed a Long 
the boundary coordinates they can be transformed t o  different  orientations by 

the rotat ions defined by Eqs. (2.3)or (2.4) 
ro ta t ion  matrices, it is  possible t o  use only one given by 

Instead of using a number of different  

cos f s i n  f 

- s in  $ cos $ 

i i  
I !  

, 

(2 .5)  

i n  conjunction wi th  a diagonal matrix f o r  changing signs of the main diagonal. 

For instance, the direction of the forces F of Element 2 can be transformed 

t o  those of Element 1 by 

= $ A  

1 2 

where h 

signs i f  necessary. In a similar manner the deformations 6 can be transformed 

i s  a diagonal matrix used t o  dimensionalize (see Vol. V )  and change 

by 

2 

where p is  a diagonal matrix used t o  dimensionalize and change signs. 
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With the previous def ini t ions the consti tutive boundary relat ions f o r  an 

element can be wri t ten as 

where it is  understood t h a t  l? ŝ , and sf are i n  the transformed direction 

and k i s  the element s t i f fnes s  m t r i x  i n  i t s  untransformed and nondimensiob 

a l ized  state. For future  reference k corresponds t o  the transformed ele-ment 

s t i f fnes s  matrix and i s  defined by 

- 

-1 where p i s  the inverse of p and qT i s  the transpose of @ . 

2.3 Compatibility aod Equilibrium Along Juncture Line 

A t  a shell juncture it is required that the  displacement and rotat ion vector 

be equal f o r  each element being joined together. 

i n  Eq. (2.5) provides a means by which the deformation of the various elements 

can be rotated t o  the same direction. A l l  that must be done to  guarantee 

compatibility i s  t o  equate the components of the deformation vector of the 

elements. If p 6 i s  the dimensional deformation of Element 1 along a juncture 

l i n e  and p ‘6 i s  the deformation of Element 2 along the same juncture l i ne ,  

then compatibility requires tha t  

The transformation matrix Q! 

1 
1 

2 

91” = Q! p$ (2.10) 

Similar equations can be writ ten for other elements having the same juncture 

l i ne .  

Equilibrium along a juncture l i n e  requires t h a t  the summation of forces be 

zero. For m number of elements being joined together along a comon juncture 

l i n e ,  equilibrium can be writ ten as 
m 

% = 0 
a- L (2.11) 
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where the superscript refers t o  

forces  a re  oriented i n  the same 

matrices. 

the element number and it i s  implied that the 

direction by use of the  proper transfo,-mation 

2.4 The Overall Stiffness Matrix of a Shell  Structure 

The major problem i n  forming o r  even thinking about the oveml l  stiffness matrix 

i s  devoted t o  the notation and the ordering of the elements which form the 

she l l  structure.  

The scheme t o  obtain the overall  s t i f fness  lnatrix can best  be explained by a 

simple example. 

four  elements denoted by 1, 2, 3, and 4. 
considered t o  be fixed. 

t ions are already taken in to  account. 

For this purpose the s t ructure  shown i n  Fig. 5 i s  divided in to  
Edges which a re  not junctures a re  

This simplifies the problem since the boundary condi- 

It i s  assumed that the s t i f fness  matrices 

Fig. 5 Shell Structure 

and fixed-edge forces have been developed f o r  each of the she l l  elements and 

t h a t  the forces and displacements have been transformed t o  a compatible 

coordinate system. The next problem i s  t o  number the juncture points. The 

a 
10 
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69 
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arrangement shown i n  Fig. 5 i s  one possible ordering. 

re la t ion  f o r  each element is  written as 
The const i tut ive edge 

i = 1, 2 12 I f  
i ...... I F  = 'E. 6 + F 

i 13 3 (2.12) 

where the superscript 4 

t o  the juncture point. 

that is  necessary i s  t o  w r i t e  the  equilibrium equations 

re fers  50 the  element number and the subscript refers  

Since compatibility is  already taken in to  account, a l l  

i = 1, 2, ..... 12 
a- 1 

Substi tuting Eq. e.12) in to  Eq. (2.13) yields the system of equations 

'- + 3. + %ij + 4- k . . )  6 = -($f t $f + 3Ff + 4Ff) (2.14) 
1 i i I J  1J j 

( kij 

i = 1, 2 .........12 

For the par t icu lar  problem under consideration, these equations i n  expanded 

form become 

where the X 

x x x  x x  

x x x  x x  
x x x  x x  

x x x x x  
x x x x x  

x x x x x  
x x x x x x x x  

x x x x x x x x  I x x x x x x x x  

x x x x x x  
x x x x x x  L x x x x x x  

denotes a non zero i s  the desired 

(2.15) 

set of 

11 



simultaneous equations which i n  m t r i x  form i s  

- 
For this par t icu lar  ordering it i s  seen tha t  the K matrix i s  full. When a 

t o  take advantage of the zeros. 
large number of points a re  involved it is  advantageous t o  order the - K matrix 

A "natural" ordering system i s  t c  consider points 1, 2, 3 t o  comprise one l i ne ,  

say l i n e  1, and points 4, 51 6 t o  comprise l i n e  2, e tc .  Then with the nota-:.ion 

that the superscript on the r igh t  implies the l i ne  number 
deformation of l i ne  1. 

b1 s igni f ies  the 

With t h i s  notation the expanded matrix Eq. (2.15)can be writ ten i n  block form as 

] X 

(2.16) 

By reordering the equations, the following matrix equation can be obtained 

For t h i s  small problem the ordering is  not important; however, f o r  larger  

systems the advantage i s  evident. 

12 



Section 3 
APPLICATION OF THE STIFFNESS METHOD To A MULTICELLULAR STRUCTURE 

3.1 General 

The problem considered i n  t h i s  section i s  concerned with developing the overal l  

s t i f fnes s  matrix of the multicellLlar she l l  structure shown i n  Fig. 1. 

structure  i s  subjected t o  internal  pressure, body forces, and thermal gradients. 
It is  assumed tha t  the loads a re  symmetric with respect t o  the diametrical 

plane bisecting each p a i r  of ce l l s  located opposite each other. Thus i n  a 

s t ruc tura l  analysis only one-half of a c e l l  need be considered. Each c e l l  i s  
composed of four basic s t ruc tura l  elements, namely, f l a t  plate ,  cylindrical ,  

conical and spherical segments. 

Volumes I1 through V f o r  the analysis of intermediate loads and the e f fec t  of 

boundary deformations i n  computing the element influence coefficients.  

This 

Chese elements have been investigated i n  

Techniques t o  determine the overall  s t i f fnes s  matrix of she l l  s t ructures  

discussed i n  Section 2 a re  applied t o  the analysis of a s t ruc tura l  model of the 

multicell .  

systems but i s  or ientated t o  the fipplication of special  ordering methods and 

techniques t o  arrange the s t i f fness  rnatrix i n  a form by which the s e t  of 

simultaneous equations can be sol7:ed by methods discussed i n  Vol. 1. 

It i s  not the purpose i n  t h i s  section t o  present detailed equation 

In some cases it i s  expedient t o  have a method by which the s t ruc tura l  behavior 

can be obtained by simple means. From t h i s  standpoint a successive approxima- 

t i o n  technique i s  presented which by-passes the necessity of solving a very 

large s e t  of equations a t  one time. Its advantage l i e s  i n  i t s  inherent simplicity 

and the f a c t  t h a t  loca l  behavior can be assessed during the analysis.  The scheme 

i s  based on l i n e  relaxation i n  which the elements with a common juncture along 

one l i n e  are  solved a t  one time. 



3.2 Overall St i f fness  Matrix e 
The s t ruc tura l  model shown i n  Fig. 6 represents one way i n  which one-half of 

a c e l l  can be subdivided into bas LC elements. A s  shown i n  this figure there 

are eleven elements joined together along eighteen boundary l i nes .  

ordering of elements and l i nes  shown i s  not unique. 

numbering system the juncture l ines  around Element 9 are  even numbers, while 

the  transverse l i nes  between elements such a s  the sphere and cone a re  odd 

numbers. 

or loads. 

w i l l  become part of the r igh t  kiand vector F . 

The 

For t h i s  par t icu lar  

Lines 19 and 20 can be used t o  input known data such as displacements 

If deformations a re  specified along these l ines ,  t h i s  information - 

Because of symmetry a l l  of the elements have three d i s t inc t  boundary l i nes  

except f o r  Element 9 which forms a connection w i t h  a l l  other elements. T h i s  

p l a t e  can be considered t o  have eight boundary l i nes  which a re  even numbers. 

The nomenclature used i n  t h i s  section corresponds to  l i n e  ordering; thus, 

superscripts a r e  used on forces F , deformations 6 a and influence coeffi- 

c ien ts  t o  denote the element and l ine  number. 

the element number while the values on the upper r igh t  denote the l i n e  segment. 

For the deformation a number on the upper right only corresponds t o  the  trans- 
4 

formed deformation vector along the  specified l i ne ,  i . e . ,  6 i s  the deforma- 

t i on  along l i n e  4. With this notation the consti tutive boundary equations f o r  

Element 1 which is  a cone becomes 

Values on the upper l e f t  denote 

[] = ~ :! ~ + 

(3.1) 

1Ff 3 1- 
Kg K32 l F 3  

where 

nate systems. 

coupling between l i n e s  1 and 3. 
elements have the same form as Eq.(3.l)except f o r  Element 9.  
i n  general have coupling a l l  around the p la te .  

loading it i s  not subjected t o  fixed edge forces unless it i s  thermally loaded. 

'F" and ?Ffm a re  dimensionalized and transformed t o  specif ic  coordi- 

Equation (3.l)does not take advantage of the possible small 
The const i tut ive relat ions f o r  a l l  the other 

This element can 

Because of the symmetrical 

14 
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Including this possibi l i ty ,  the general form f o r  the consti tutive boundary 

re la t ion  of Element 9 of Fig. 6 i s  

"F2' 

'F4 

'F6 

9F8 
- - 

gF10 

9FJ2 

gF14 

9F16 
\ / 

The most important feature i n  determining possible forms of the overal l  s t iff-  

ness 

structure.  

coefficients by noting the e f fec t  of the deformations on forces away from the 

point at 'which the deformations a r e  specified. 

most three l i n e  elements, then the form of the  

ra ther  compact fashion. 

sophistication is  possible f o r  e f f ic ien t  ordering. In many cases the  coupling 

w i l l  be small; hence, f o r  prac t ica l  purposes the terms can be neglected. Th i s  

simplification should necessarily be ver i f ied  by simple meaningful checks such 

as joirrirg elenents together t o  form a la rger  structure of the same geometry. 

- 
K matrix involves the coupling e f fec t  of t he  elements involved i n  the 

The magnitude of the coupling can be determined from the influence 

If an element i s  coupled t o  a t  

E matrix can be arranged i n  a 

However, when there i s  fill coupling very l i t t l e  

2ia:s - -  L e r e  are  eighteen l i n e  elements i n  the model shown i n  Fig. 6, the 

equilibrium equations a re  
j 1 m = 1, 2, 3 ....... 18 (3.3) 

R =i 

where i through j a re  the elements with the same juncture l i ne .  For instance, 

l i n e  3 is  the juncture of Element 1 and 2, hence Eq. (3.3)for this l i n e  i s  

16 



On subst i tut ing equations of the form of Egs. (3.1)and(3.2) in to  Sa_. (3.3) y i e l i s  

the set of simultaneous equation system i n  terms of the unknown deformation 

gR . If the equilibrium equations are wri t ten i n  numerical order, i . e .  
m = 1, 2 . . . . . 18 the 

4 unknowns a t  each point yields a t o t a l  of 1,440 equations i n  the overall  

s t i f fnes s  matrix K . 
o r  i t e r a t i v e  methods but t i m e  i s  generally prohibitive. can be arranged 
i n  block diagonal form, then the direct  methods discussed i n  V o l .  1 can be used 
t o  solve the en t i r e  problem i n  a reasonable amount of computer t i m e .  

K w i l l  be f‘ull i f  special  coupling and ordering are not used. 

w i l l  be full. For 18 l ines  with 20 points each and 

- 
Equation systems of t h i s  s ize  can be solved by d i rec t  

If 

I n  general - 

By assuming that the coupling of Element 9 i s  res t r ic ted  t o  one l i n e  t o  the 

r igh t  and one l i n e  t o  the l e f t  of the l i n e  i n  question and ordering the unknowns 

i n  an al ternate  manner, the form of the overall  s t i f fness  matrix f o r  the model 

shown in Fig. 6 is  of a 9 block diagonal form given by 

L- 
This system can a l s o  be considered as  a 

a re  considered a t  a time. 
block f ive  diagonal matrix i f  two l i n e s  



I 

. 
3.3 Successive Approximation 

Another approach t o  solve the juncture problem of multicellular structures i s  

an i t e r a t i v e  technique of successive approximation. 
displacements of a l l  the  junctures by one large matrix, the junctures can b': 

Instead of solving f o r  

11 relaxed" one a t  a t i m e  t o  sa t i s fy  equilibrium and compatibility a t  every 

point  of one juncture l i n e  while a l l  other junctures remain fixed. When one 

juncture l i n e  is relaxed, f o r  example l i n e  5 i n  Fig. 6, the displacements of 

t h i s  juncture w i l l  i n  general resu l t  i n  additional boundary forces a t  a l l  the 

boundaries of the she l l s  which an? bounded by l i n e  5, i . e .  she l l  segments 2 

and 3. A f t e r  one juncture i s  relaxed, other junctures can be relaxed in t h e  

same manner u n t i l  a l l  the junctures of the s t ructure  a re  relaxed t o  form one 

complete cycle. I n  the f irst  cycle, the junctures can be relaxed t o  s a t i s f y  

the equilibrium condition by considering the fixed-edge forces only, leaving 

the  boundary forces due to  the juncture displacements t o  the next cycle. 

additional boundary forces due to  the  displacements found during a l i n e  relaxa- 

t i on  can be computed by the consti tutive boundary equations f o r  the she l l  

elements. These forces are  added to the r igh t  hand vector f o r  the second cycle. 

This, i n  e f fec t ,  accounts f o r  the coupling between various elements. If the 

coupling i s  small the i t e r a t ion  should converge rapidly. It is  also possible 

t o  consider the accumulated boundary forces due t o  the displacements of other 

junctures simultaneously wi th  the fixed-edge forces t o  accelerate convergency. 

T h i s  successive approximation technique w i l l  never give the exact solution as 

a f t e r  relaxing the l a s t  juncture some boundary forces of the  other junctures 

w i l l  v io la te  the equilibrium condition established previously. However, the 

inconsistency, i . e .  the boundary forces resul t ing from relaxing the l a s t  

juncture, can be reduced t o  any desired degree by repeating the cycles. 

The 

There a re  a number of advantages to  th i s  method. When one juncture i s  relaxed, 

only two or three she l l  segments are involved, transformations w i l l  be simpler 

than f o r  the overal l  system. 

points t o  reduce the complication of dimensionalization. Besides, it has been 

shown i n  Volumes 11, I11 and I V  that the accuracy of numerical analysis of 

Equal spacings can be used between the boundary 
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she l l s  can be increased by reducing the spacing near the juncture, thus the 

spacing between the rows are  graded to  reduce the t o t a l  number of mesh points 

and amount of numerical computations without sacr i f ic ing accuracy. I If the 

junctures a r e  considered one a t  a t i m e ,  only one side of the she l l  segments i 
needs t o  be spaced closely, while nominal spacings can be maintained on the 

o ther  sides. 

re lax  one juncture i s  the same as t h a t  t o  re lax a l l  the junctures a t  one time 

except f o r  the additional boundary forces due to  relaxing of the other junc- 

I 
I , In carrying out the successive approximation, the procedure t o  

I 
tu re  l ines .  I 
3.4 Mumerical Example 

I Tc demonstrate the d i rec t  s t i f fnezs  matrix method, two orthotropic cyl indrical  

panels of equal dimensions are  joined together end t o  end t o  form a panel with 

twice the length of each of the or iginal  elements as shown in Fig. 6. For 

For Elements 1 and 2 

v = .3 d/b = .0884 
d/h = 4.1 
t / h  = 1.504 

p = ROc/L = 1.256 
eC = .go8 

R/h = 242 

Fig. 6 Example Geometry f o r  Juncture of Two Cylindrical Panels 



t h i s  example one juncture l i n e  ab i s  invol-rpd. 

cyl indrical  panel with fixed-edges subjected t o  internal  pressure. 

example i s  used to  demonstrate the accuracy and f e a s i b i l i t y  of the techniqGe 

since the results can be compared t o  the results of  a complete cyl indrical  

panel with symmetry. 

The complete structure is  a 

T h i s  

A d i g i t a l  program has been wri t ten which prescribes equilibrium and c o q a t i -  

b i l i t y  between she l l  elements along juncture l i n e s  and generates the overal l  

s t i f fnes s  matrix 

of equations 

and the r igh t  hand vector F, and solves the resul t ing set 

f o r  the deformations 

conjunction with the influence coefficient program described i n  V o l .  V, and 

through i t s  own iaput data has the capabili ty of forming the 

ca l l i ng  the element s t i f fness  m t r i c e s  from tape, multiplying them by specified 

h , ~1 and P, matrices f o r  dimensionalization and transformation as described 

by Eq. (2.9) and adding the new element s t i f fnes s  matrices t o  i n  a predeter- 

mined order. 

hR along the juncture l ines .  This program i s  used i n  

- 
K matrix by 

The F vector i s  fonied i n  a s imilar  manner. 

For the  example it i s  necessary t o  compute on ly  the influence coeff ic ients  of 

Element 1 along i t s  upper boundary ab since the coeff ic ients  of Element 2 

on i ts  lower boundary can be computed by multiplying the coefficients of 

Element 1 a t  a point i n  the following manner 

and the fixed-end forces of Element 2 a re  obtained by 

-1 
$f = [ 1 1 1 ]  IFf 
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If the  boundary coordinates of E l  ?merit 1 are used as a reference, then h e 
and p f o r  Element 2 are 

and the angle of rotat ion $ i s  zero f o r  both elements. Thus @ is  a uni-fy 

matrix. In the  final analysis the influence coefficients and fixed-end forces 

of Element 2 

Element 1 by 

can be found f r o m  the coefficients and fixed-end forces of 

using the following values of h and p 

i n  Eq. (2.9). 

Four solutions 

includes 5 and 

the grading is  

For Element 1 , A , p and @ are  uni ty  matrices. 

of the  problem were obtained using different  spacings. This 

10 columns with 5 equal spaced rows and 1 3  graded rows where 

f ine  near the juncture l i ne .  The resu l t s  of this l i n e  relaxa- 

t i o n  are presented i n  Fig. 7 f o r  the displacement components w and v . It 

i s  noted that the rotat ion and displacement component 

symmetry. 
panel ( p = .628) w i t h  5 and 10 columns 

i s  seen that the matching resu l t s  are i n  good agreement w i t h  the r e su l t s  of 

the complete panel. 

by using more columns. 

by using suf f ic ien t ly  close spacing. 

accuracy can be obtained by using a small number of rows and columns. 

u are zero due t o  

The juncture matching i s  compared t o  resu l t s  of a long cyl indrical  

It and 6 and 14 equally spaced rows. 

The detailed dis t r ibut ion i n  the 8 direct ion i s  revealed 

Thus it i s  essent ia l  t o  determine the accuracy required 

However, it i s  a l so  seen tha t  f a i r  
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